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Self-propagating free-radical binary frontal polymerization
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Abstract. The first mathematical model for free-radical binary frontal polymerization (BFP), is presented. The
model describes the following experimental situation. A test tube is filled with a mixture of two monomers and
an initiator. When the temperature at the top of the tube is increased a self-sustained polymerization wave which
propagates along the axis of the tube is formed. Two different polymer species are synthesized in the wave. Such
one-dimensional polymerization waves are studied. Approximate analytical solutions are derived and compared
to numerical solutions. The effect of various parameters of the model on the front velocity and temperature is
discussed.
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1. Introduction

Frontal polymerization (FP) is a method of manufacturing polymer via a self-propagating
reaction wave. The reaction wave is formed when the temperature is locally increased to the
reactant-dependent ignition temperature. This wave propagates through the medium convert-
ing the initial reactants into polymer product. Chemical conversion occurs in a narrow region
of the wave, called the reaction front. The front separates the medium into two distinct regions,
reactants ahead of the front and product behind the front. The physical state of these regions
depends upon the reactants and the conditions of the experiment, but typically the monomers
are liquid and the polymer is either a solid or a very viscous liquid.

Front propagation is due to the exothermicity of the polymerization reactions and the diffu-
sion of heat. The chemical mechanism for FP is usually free-radical polymerization. However,
FP has also been demonstrated in polymerization processes with different chemical kinetics
such as epoxy curing [1] and ring-opening metathesis [2].

Free-radical frontal polymerization falls into the classification of chain polymerization. As
the name indicates, the polymer product is formed by successive linking of monomer mo-
lecules in a chain-like fashion. Homopolymerization refers to systems that contain one type of
monomer; binary and copolymerization are systems that contain two (or possibly more in the
case of copolymerization) types of monomers. Binary polymer chains grow by successively
adding the same type of monomer radical to the end of the chain and are analogous to forming
two homopolymers in the same system. Copolymers contain units of both monomers in each
copolymer molecule [3]. Binary polymerization and copolymerization are effective methods
for creating polymers with specific qualities like an increase in strength, more flexibility, oil
and grease resistance, or better impact resistance [4]. Simultaneous inter-penetrating polymer
networks (IPNs) were demonstrated with binary frontal polymerization using a combination
of an epoxy monomer, which forms a step polymer, and a free-radical monomer [5].
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The history of frontal polymerization begins in 1972 with the work of Chechilo et al.
[6]. They developed FP as the polymer analog to self-propagating high-temperature syn-
thesis (SHS) [7], a combustion process used to make ceramics and intermetallic compounds.
Their research on methyl-methacrylate frontal polymerization showed that front velocity and
polymer composition are influenced by initiator species, initiator concentration and pressure
change [6, 8–10]. Subsequent experimental work [11–14] demonstrated free-radical frontal
polymerization for a variety of monomers. Most of these experiments used liquid neat mono-
mers. However, FP has also been observed in systems with solid monomers [15, 16], in
dispersions [17], and in solutions [18]. Along with demonstrating the feasibility of FP with
particular monomers, experiments have also studied which conditions most affect the process
and how to produced polymers with specific desired properties, e.g. functionally gradient
polymeric materials [19], temperature-sensitive hydrogels [20], thermochromic composites
[21, 22], and conductive composites [23].

Mathematical models of frontal homopolymerization and copolymerization have been suc-
cessfully developed. The solutions of these models have been both numerical [24–27] and
analytical [24, 27]. In these works, theoretical results are compared to experimental results to
demonstrate the reliability of the models.

Stability of the propagating front has also been investigated. Experimental studies have
examined convective instabilities [28, 29] and the nonlinear dynamics of the polymeriza-
tion wave [30–33]. Theoretical studies include linear stability analyses [34, 35] and weakly
nonlinear analysis of FP [36].

In this paper we present the first mathematical model which describes the following free-
radical binary frontal polymerization (BFP) experiment. A test tube is filled with a mixture
of two monomers and an initiator. Then, the temperature at the top of the tube is increased,
forming a self-sustained polymerization wave that propagates along the axis of the tube. Our
model describes such one-dimensional polymerization waves. We derive approximate analytic
solutions to our equations and compare these results to numerical solutions. We also study how
the various parameters of the model influence the front velocity and temperature.

2. Mathematical model

In this section, we outline the kinetic scheme of the reactions and present the mathemat-
ical model. As is typical with all chain polymerization, there are three steps – initiation,
propagation and termination [3].

Initiation involves two reactions. In the first reaction the initiator (I ) decomposes into two
active radicals (R):

I
kd−→ 2R,

where kd is the rate constant for initiator decomposition. The second initiation reaction at-
taches the radical species to their respective monomers to form live monomer radicals M∗

j,1
(j = 1, 2)

R + M1
kp1−→ M∗

1,1, R + M2
kp2−→ M∗

2,1. (1)

The quantities kp1 and kp2 are the rate constants for these reactions.
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The addition of monomer M1 to M∗
1,n (a monomer radical that consists of n monomers M1,

n = 1, 2, 3, . . .) and monomer M2 to M∗
2,m (a monomer radical that consists of m monomers

M2, m = 1, 2, 3, . . .) represents the propagation step

M∗
1,n + M1

kp1−→ M∗
1,n+1, M∗

2,m + M2
kp2−→ M∗

2,m+1. (2)

Note that the propagation rate constants kp1 and kp2 in (2) are taken to be the same as in (1)
as discussed in [37]. Propagation forms live polymer chains. These chains continue to grow
until two live polymer chains of the same type attach to each other to terminate the reaction

M∗
1,n + M∗

1,m

kt1−→ P1, M∗
2,k + M∗

2,l

kt2−→ P2.

The rate constant for termination is represented by ktj . Typically the terminated polymer
chains are called dead polymer to signify that growth has ended.

From the mechanism described above, we generate the following mathematical model
where the kinetic equations represent the mass balance of all of the species:

dI

dt
= −kdI, (3a)

dR

dt
= 2kdI − kp1RM1 − kp2RM2, (3b)

dM1

dt
= −kp1RM1 − kp1M1M

∗
1 , (3c)

dM2

dt
= −kp2RM2 − kp2M2M

∗
2 , (3d)

dM∗
1

dt
= kp1RM1 − 2kt1M

∗2
1 , (3e)

dM∗
2

dt
= kp2RM2 − 2kt2M

∗2
2 . (3f)

In these equations t represents time, I denotes initiator concentration, R denotes the concen-
tration of primary free radicals, M1 and M2 denote monomer concentrations, and M∗

1 and
M∗

2 denote the concentration of live monomer radicals consisting of M1 and M2, respect-
ively (we do not distinguish between monomer radicals of different lengths, and introduce
M∗

1 = ∑
n M∗

1,n, M∗
2 = ∑

m M∗
2,m). All quantities of the form kα (where α is p1, p2, t1 and

so on), represent reaction rate constants, which, in fact, depend upon the temperature T of the
medium and are given by an Arrhenius relationship

kα = k0
α exp[−Eα/(RgT )].

Here Rg is the gas constant, and k0
α and Eα are the collision frequency factor and activation

energy for the respective reaction rate constant.
Since the polymerization process is exothermic and the reaction rates depend upon temper-

ature, we introduce an equation for temperature that accounts for thermal diffusion and heat
release by the exothermic propagation reactions,

∂T

∂t
= κ∇2T − q1

∂M1

∂t
− q2

∂M2

∂t
. (4)



362 M. F. Perry and V.A. Volpert

In this equation, ∇2 is the Laplacian with respect to the spatial variables ξ = (ξ1, ξ2, ξ3) (ξ1 is
the coordinate along the test tube axis), κ is the thermal diffusivity of the mixture, and q1 and
q2 represent the temperature increase due to the consumption of 1 mol/liter of M1 and M2,
respectively. We assume that κ , q1, and q2 are constant.

We simplify this system of equations by introducing the steady-state assumption for radical
concentration. The assertion is that after a transition period, the primary radical concentration
and the monomer radical concentrations remain nearly constant. This has been justified for
frontal polymerization in [37]. To implement this assumption we set the time derivatives in
Equations (3b), (3e), and (3f) to zero, and solve the resulting system of algebraic equations
for R, M∗

1 , and M∗
2 to obtain

R = 2ρ
kdJ

2

kp1M1
, M∗

1 =
√

kd

kt1

√
ρJ and M∗

2 =
√

kd

kt2

√
1 − ρJ.

In the above equations

J = √
I , ρ = kp1M1

kp1M1 + kp2M2
≡ KpM1

KpM1 + M2
,

where Kp = kp1/kp2.
If we substitute the approximations of M∗

1 and M∗
2 in Equations (3c) and (3d), neglect

the R terms (we do this because the concentration of primary radicals is significantly smaller
than the concentration of the growing chains), and assume a one-dimensional traveling wave
solution, i.e., solutions that depend on x = ξ1 + ut where u is the velocity of the reaction
wave, we reduce the Equations (3) and (4) to

uJ ′ + 1

2
kdJ = 0, (5a)

uM ′
1 + keff1

√
ρJM1H(J0 − J ) = 0, (5b)

uM ′
2 + keff2

√
1 − ρJM2H(J0 − J ) = 0, (5c)

κ

u
T ′′ = T ′ + q1M

′
1 + q2M

′
2. (6)

In these equations the prime denotes the derivative with respect to x and keffj = kpj

√
kd/ktj .

We also introduce the Heaviside function H into the equations to account for the inaccuracy
of the steady-state approximation which allows polymerization reactions to occur prior to de-
composition, a behavior which is inconsistent with the polymerization kinetics. The Heaviside
functions is defined as

H(J0 − J ) =
{

0, J ≥ J0

1, J < J0
,

so that polymerization cannot start if J = J0 ≡ √
I0, i.e. if decomposition of the initiator has

not started.
The boundary conditions associated with Equations (5), (6) are as follows. Far ahead of the

wave (x → −∞) the conditions are the initial concentrations of initiator (J0) and monomer
(M10,M20) and the initial temperature (T0):

J = J0, M1 = M10, M2 = M20, T = T0. (7)
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Behind the wave (x → +∞)

T ′ = 0. (8)

We can further simplify (6) by integrating the equation once and applying the boundary
conditions (7) to get

κ

u
T ′ = T − T0 + q1(M1 − M10) + q2(M2 − M20). (9)

Analysis of Equations (5) and (9) shows that in the limit x → +∞, J , M1, M2, and T

approach constant values. In particular, all of the initiator is consumed so J goes to zero.
However, the monomer concentrations do not necessarily vanish, so we denote these con-
stants as M1B and M2B . Using boundary condition (8) and Equation (9) we can express the
temperature in the limit x → +∞ in terms of the final monomer concentrations as

TB = T0 + q1(M10 − M1B) + q2(M20 − M2B). (10)

The values M1B , M2B and TB along with the wave velocity u are unknown. In the next section
we determine these values because they give insight into the frontal polymerization process.

3. Solution procedure

In this section we study Equations (5) and (9) to determine the characteristics of the front.
We use methods from combustion theory and perturbation techniques to obtain approximate
solutions.

In combustion theory, nondimensional parameters, such as RgTB/Ed , determine the struc-
ture of the wave. Exploiting the fact that these parameters are small, one can replace the
temperature-dependent, Arrhenius reaction rate constants with a simpler function where the
integral of this new function over the temperature domain is approximately the same as the
original function and the maximum height of the two functions are equal. Employing this
technique leads to approximate analytic solutions known to be very accurate. Though frontal
polymerization is much slower and significantly less exothermic than combustion processes,
parameters of this form also determine the wave structure for frontal polymerization and hap-
pen to be small. Therefore, this technique can been used to determine approximate solutions
for frontal polymerization. In fact, it has been used to study FP problems yielding accurate
results [24, 27, 37, 38].

The simpler function with which we replace the kinetic parameter kα(T ) is the following
step function

k̂α(T ) =
{

0, T < T
ig
α

kα(TB), T > T
ig
α

, (11)

where

T ig
α = TB(1 − εα), εα = RgTB/Eα. (12)

Here, again, kα(T ) is any Arrhenius exponential in the model, i.e., the subscript α can be
p1, p2, t2 and so on, and εα is a small dimensionless parameter. The temperature T

ig
α is the

temperature at which the corresponding reaction begins. Equation (12) accounts for the fact
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that for large activation energies, ignition occurs within O(εα) of the final burned temperature.
Because of the presence of the Heaviside functions in the equations and due to the fact that
the decomposition reaction activation energy Ed is typically much larger than the other activ-
ation energies in the problem, all the reactions will begin simultaneously at the temperature
T∗ = T

ig
d , the temperature at which the decomposition reaction begins. Similar to combustion

theory, the height of the chosen step function is equal to the maximum of the Arrhenius,
temperature-dependent function and, the integral values of the two functions over the range
T0 to TB are approximately equal, which can be seen by approximately evaluating the integral∫ TB

T0

kα(T ) dT

using the Laplace method.
By replacing the reaction rate constants with step functions, we can consider Equations (5)

and (9) in two regions: one where no reaction occurs and the other where all of the reactions
occur. While we know the temperature at which the reactions begin, T = T∗, we need to
determine the spatial point at which they begin. Since our equations are invariant under spatial
translation, we can choose any point. For convenience, we define this point to be x = 0. Then,
the equations ahead of the reaction front (x < 0) become

uJ ′ = 0, uM ′
1 = 0, uM ′

2 = 0, (13a)

κ

u
T ′ = T − T0 + q1(M1 − M10) + q2(M2 − M20)

with boundary conditions (7). The solution for this system is easily determined,

J (x) = J0, M1(x) = M10, M2(x) = M20, (14a)

T (x) = T0 + (T∗ − T0) exp
u

κ
x. (14b)

In the region x > 0, the equations take the form

uJ ′ + 1

2
ka
dJ = 0, (15a)

uM ′
1 + ka

eff1

√
ρaJM1 = 0, (15b)

uM ′
2 + ka

eff2

√
1 − ρaJM2 = 0, (15c)

κ

u
T ′ = T − T0 + q1(M1 − M10) + q2(M2 − M20). (15d)

In all of our equations, the superscript a denotes that the quantity is evaluated at T = TB .
At x = 0 we impose the boundary condition

J (0) = J0, M1(0) = M10, M2(0) = M20, and T (0) = T∗ (16)

to ensure continuity of the solution. The boundary condition as x → ∞ is given by Equation
(8).
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We now proceed to solve Equation (15). We define A = M1/M2 and divide Equations
(15b) and (15c). This results in

dM1

dM2
= ka

r A
3/2, (17)

where

ka
r = (Ka

p)3/2

(
ka
t1

ka
t2

)−1/2

.

Since

dM1

dM2
= M2

dA

dM2
+ A,

we can rewrite (17) as

M2
dA

dM2
= ka

r A
3/2 − A (18)

and solve to find the following equations for M1 and M2:

M1(A) = M10
(ka

r

√
A − 1)2

(ka
r

√
A0 − 1)2

(19a)

M2(A) = M20
A0

A

(ka
r

√
A − 1)2

(ka
r

√
A0 − 1)2

. (19b)

Next, we solve for the initiator concentration in terms of A. First we combine Equations
(15a), (15c) and (18) to obtain

dJ

dA
= ka

d

2ka
eff2

√
Ka

pA + 1

ka
r A

3/2 − A
. (20)

Then we integrate Equation (20) to get

2ka
eff2

ka
d

(J (A) − J0) =
∫ A

A0

√
Ka

pν + 1

ka
r ν

3/2 − ν
dν. (21)

If we let x → ∞ in Equation (21), we obtain a condition for AB

−2ka
eff2J0

ka
d

=
∫ AB

A0

√
Ka

pν + 1

ka
r ν

3/2 − ν
dν. (22)

Likewise, if we let x → ∞ in Equations (19), then A → AB and

M1B = M1(AB) and M2B = M2(AB). (23)

These conditions and Equation (10) give us a closed system of equations for the unknown
quantities AB , M1B , M2B and TB .

Though the integrals in (21), (22) can be computed exactly, the resulting expressions are
cumbersome. Since we desire simplified expressions for the unknown quantities, we compute
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the integrals approximately. The assumption |A0 − AB |/A0 	 1, which comes from an
analysis of Equation (22) and the realization that the quantity (2ka

eff2J0)/ka
d is typically small,

allows us to derive the following linear approximations for J (A) and AB :

J (A) = J0 + (A − A0)
ka
d

2ka
eff2

√
Ka

pA0 + 1

ka
r A

3/2
0 − A0

(24)

and

AB = A0 − 2ka
eff2J0(k

a
r A

3/2
0 − A0)

ka
d

√
Ka

pA0 + 1
. (25)

We can then substitute AB in Equations (23) and (10) to get expressions for M1B , M2B and
TB .

We derive the equation to determine the velocity of the front by dividing Equation (15d)
by (15a) and multiplying by Equation (20):

u2

κ
((T − T0) + q1(M1(A) − M10) + q2(M2(A) − M20))

J ′(A)dA

J(A)
= −1

2
ka
ddT . (26)

We then note that in the reaction zone

TB(1 − εd) < T < TB, εd 	 1.

Since we are considering Equation (26) in the reaction zone and εd is small, we can replace T

with TB to rewrite Equation (26) as

u2

κ

[
q1(M1(A) − M1B) + q2(M2(A) − M2B)

] J ′(A)dA

J(A)
= −1

2
ka
ddT . (27)

Finally, we integrate both sides across the reaction zone to derive the integral expression for
u2,

u2 = −κkd(TB)

2IA

RgT
2
B

Ed

(28)

where

IA =
∫ AB

A0

J ′(A)

J (A)
(q1(M1(A) − M1B) + q2(M2(A) − M2B)) dA.

We can further simplify the expression for the velocity by Taylor expanding IA about A0 to
obtain

u2 = κJ0kd(TB)

2J ′(A0)(A0 − AB)

RgT
2
B

Ed(TB − T0)
. (29)
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Figure 1. Velocity profiles for increasing initiator concentrations.Curve (1) – Numerical solution, curve (2) –
Analytic approximation.

Figure 2. Velocity profiles for increasing initial temperature. Curve (1) – Numerical solution, curve (2) – Analytic
approximation.

4. Results and discussion

The analytic solutions for the velocity and final monomer concentrations derived above allow
us to examine which of the many parameters in our equations affect the velocity and tem-
perature of the front, TB . Though it is possible to solve the transcendental equation for TB

approximately, we rely on an equation solver in MAPLE to extract this information. We com-
pute numerical solutions to the original equations using a fourth order Runge-Kutta method
with shooting on the velocity variable [39] and compare them to the analytical solutions. The
parameters found in Tables 1 and ?? are used as base values for discussion and are typical
values for free-radical polymerization [40]. The total concentration of the initial monomer is
fixed at 12 mol/L, i.e. M10 + M20 = 12.

In frontal homopolymerization, the velocity of the front increases as the initiator concentra-
tion and the initial temperature increase [24]. We can see from Equation (29) that this should
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Figure 3. Front temperature for increasing initiator
concentrations. Curve (1) – J0 = 0·3, curve (2) –
J0 = 0·2, curve (3) – J0 = 0·1.

Figure 4. Front temperature for increasing initial tem-
perature. Curve (1) – T0 = 303 K, curve (2) – T0 =
335 K.

Table 1 Initiator and temperature parameters. Table 2 Kinetic parameters for monomers.

Parameter Value Monomer 1 Monomer 2

J0 (mol/L)0·5 0·2 k0
p (L/mol · s) 1·8 × 105 4·92 × 106

k0
d (1/s) 2·6 × 1017 Ep (Cal/mol) 1381 2530

Ed (Cal/mol) 29600 k0
t (L/mol · s) 2·21 × 107 9·8 × 106

T0 (K) 303 Et (Cal/mol) 250 700

κ (cm2/s) 1·42 × 10−3 q (L/K · m) 30 33

also hold true in binary frontal polymerization. Figures 1 and 2, plots for starting initiator
concentrations of J0 = 0·1, 0·2, and 0·3 and initial temperatures of T0 = 303 K and T0 = 335
K, respectively, confirm this relationship. These figures also verify a qualitative agreement
between the analytic approximation and the full numerical solution of (5), (6).

Like velocity, TB increases as both the initiator concentration and initial temperature in-
crease, see Figures 3 and 4. (We remark that Figures 3–8 are based on the approximate
analysis). However, when we compare Figures 3 and 4 to velocity Figures 1 and 2, we find that
the influence of TB on the velocity is not as we would expect. In homopolymerization and in
copolymerization, the front temperature plays a dominant role in determining the velocity of
the front. However, this is not the case in binary frontal polymerization as we will demonstrate.

In Figures 3 and 4, there is a clear minimum TB which occurs close to pure M1. Likewise,
in Figures 1 and 2 there is minimum velocity but it is not as obvious and it occurs much closer
to pure M1. We also observe that there is a change in concavity in temperature profiles, which
does not occur in the velocity profiles. If TB were the dominant parameter in determining
the velocity, the minimum TB and minimum velocity would occur at or near the same point
and the rates of change in TB and velocity would be in agreement. Since this is not the case,
we conclude that other factors are more influential in determining the velocity of the front.
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Figure 5. Front velocity and temperature for increasing k0
p1. Curve (1) – k0

p1 = 1·8 × 105 (L/mol · s), curve (2) –

k0
p1 = 7·5 × 105 (L/mol · s).

Figure 6. Front velocity and temperature for decreasing k0
t1. Curve (1) – k0

t1 = 2·21 × 107 (L/mol · s), curve (2)

– k0
t1 = 2·21 × 105 (L/mol · s).

We will show that in BFP the kinetic parameters of the monomer and initiator have a greater
influence on the velocity than the front temperature.

In our choice of kinetic parameters of the monomers, k0
p1, the propagation frequency factor

for M1, is smaller than k0
p2, the propagation frequency factor for M2 and k0

t1, the termination
frequency factor for M1, is larger than k0

t2, the termination frequency factor for M2. These
two conditions imply that polymer chains ending in M∗

2 are more reactive and will remain
reactive for a longer amount of time than chains ending in M∗

1 . Because the frequency of the
reactions for M2 is larger, the velocity is faster for a higher concentration of M2, as seen in
Figures 1 and 2. If we increase the reactivity of M1 by increasing k0

p1, we see in Figure 5a that
the velocity decreases for lower concentrations of M10 and increases for higher concentrations
of M10. However, in Figure 5b we see that for all concentrations of M10 the front temperature
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Figure 7. Front velocity and temperature for decreasing k0
d . Curve (1) – k0

d = 2·7 × 1017 (1/s); Ed = 29600

(Cal/mol), curve (2) – k0
d

= 2·7 × 1015 (1/s); Ed = 29600 (Cal/mol).

Figure 8. Front velocity and temperature for decreasing Ed . Curve (1) – k0
d = 2·7 × 1015 (1/s); Ed = 29600

(Cal/mol), curve (2) – k0
d = 2·7 × 1015 (1/s); Ed = 21000 (Cal/mol).

increases for a larger k0
p1. If TB were the most significant factor in determining the velocity,

the relationship between the temperature and velocity would have been similar.
If we lower k0

t1, we increase the ability of M1 to react. This increases both the velocity of
the front and the temperature of the front for all concentrations of M10, as seen in Figure 6.
We note that the location of the minimum TB and velocity are again not the same. Because
Figures 5a and 6a show dramatic influences of the kinetic parameters on the velocity we
deduce that the combination of the comonomer feed and the propagation and termination
kinetics of the monomer are more important in determining the velocity of the front than the
front temperature.

Next, we show that the initiator kinetics have an interesting influence on the front tem-
perature and the velocity. Figures 7 and 8 show there is an inverse relationship between the
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velocity and front temperature as we vary both the frequency factor and the activation energy
of the initiator. If we decrease k0

d , the velocity decreases and the front temperature increases,
as can be seen in Figure 7. If Ed is decreased, the velocity increases and the temperature
decreases which is seen in Figure 8. Analyzing Equations (29) and (10), we can see that for
this relationship to occur, k0

d must also be a controlling factor of the front velocity.

5. Conclusion

In this paper, we developed a model for binary frontal polymerization. Using simplifying
assumptions, we derived expressions for final monomer concentrations, temperature at the
front, and propagation velocity. These expressions were compared to numerical results of the
full equation to demonstrate that the approximate analytical solutions are sufficiently accurate.

We also studied which parameters influence the velocity of the front. From our study, we
conclude the comonomer feed and the kinetics of the monomers and initiator highly influence
the front velocity, while the front temperature has less of an effect on the velocity. This is un-
usual since in frontal homopolymerization and frontal copolymerization the front temperature
is dominant in determining the velocity of the front.
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